Nitriding and Ferritic Nitrocarburizing in the VDR(N) Furnace

This document contains proprietary information of Ipsen. It is submitted in confidence, and may not be reproduced or used for any other purpose or disclosed to others without written authorization from Ipsen.

© 2015 Ipsen
VDR Specifications

<table>
<thead>
<tr>
<th>Sizes: M & XL</th>
<th>Controls</th>
</tr>
</thead>
</table>
| ✽ Load dimensions (W x L x H):
 ✽ M: 24” x 36” x 24”
 ✽ XL: 36” x 48” x 36” | ✽ HydroNit® sensor measures the hydrogen content |
| ✽ Temperature up to 1,382 ºF (750 ºC) | ✽ Provides control of the nitriding potential (KN-control) |
| ✽ Gas or electrical heated | ✽ Nitro-Prof® control software utilizes process data acquisition |
| ✽ Pronox® offers post-oxidation control | |

This document contains proprietary information of Ipsen. It is submitted in confidence, and may not be reproduced or used for any other purpose or disclosed to others without written authorization from Ipsen.
VDR(N) Benefits

Uniformity:

- Gas circulation within the retort can be optimized through increased efficiency and improved directional flow.
- Excellent temperature uniformity: ± 10 °F (± 5 °C)

Versatility:

- High quench intensity with new shut-off flaps on the cold and hot side of the cooling stream.

Speed:

- Cycle time reduced by up to 30%
VDR: Temperature Uniformity

- Gas flow optimization within the retort
- Heat transfer improvement reduces the temperature difference within the load
- The VDR furnace has an excellent temperature uniformity of $\pm 10 \, ^\circ F$ ($\pm 5 \, ^\circ C$)
More Speed = Greater Profit

To produce 10-15μm white layer:

- A conventional furnace requires 12 hrs.
- The VDR furnace requires eight hrs.
- The VDR furnace produces three batches/day instead of only two batches/day

4,000-pound sample load:
Ferritic nitrocarburizing for 4 hours at 1,060 ºF (570 ºC)
VDR: Atmosphere Control with HydroNit® Sensor

Goals:
- Controlled layer structure generation
- Reproducible layer structure and thickness
- Minimal process duration

Requirements:
- Measurement device for the continuous monitoring of atmospheric component (e.g., H₂)
- Continuous monitoring of the input gases
- Atmosphere and nitriding potential algorithm
- Cracked ammonia or hydrogen for the reduction of the nitriding potential
- Automatic gas flow controller
VDR: Atmosphere Control with HydroNit® Sensor

Results:
Using the HydroNit® sensor, process time and gas consumption are reduced by up to 30 percent.
Nitriding Cycle with Pre- and Post-Oxidation

- **Pre-oxidation Condition**: Heating Controlled Process
- **Nitriding Process**: 900°F-1020°F
- **Post-oxidation Process**: 840°F-970°F

Gassing Compositions:
- **Air**: 765 Torr
- **NH₃**: up to 100% total gassing
- **N₂**: up to 50% total gassing
- **H₂O**: 765 Torr
- **CO₂**: 300 °C – 400 °C
- **C₃H₈**: (480 °C – 550 °C)
- **Nitro-Prof**: 450 °C – 520 °C

This document contains proprietary information of Ipsen. It is submitted in confidence, and may not be reproduced or used for any other purpose or disclosed to others without written authorization from Ipsen.

© 2015 Ipsen
FNC Cycle with Pre- and Post-Oxidation

Pre-oxidation Conditioning Nitrocarburizing Post-oxidation Heating Controlled Process Cooling

Air NH₃ CO₂ C₃H₈ H₂O

N₂ 45% Total Gassing NH₃ 50% Total Gassing CO₂ 5% Total Gassing N₂ (45% total gassing) NH₃ (50% total gassing) CO₂ (5% total gassing)

Pressure 765 Torr <30 Torr 765 Torr <30 Torr

(300 °C – 400 °C) 570°F-750°F (550 °C – 590 °C) 1020°F-1095°F (450 °C – 520 °C) 840°F-970°F

Nitro-Prof®

This document contains proprietary information of Ipsen. It is submitted in confidence, and may not be reproduced or used for any other purpose or disclosed to others without written authorization from Ipsen.

© 2015 Ipsen
Pre-Oxidation and Oxinitriding: Improving Reaction Kinetics

- Reduces the incubation time of nitride formation
- Improves the uniformity of the compound layer thickness
- Increases the thickness of the ε-compound layer
Pronox®:
Corrosion Resistance Improvement

Heat Treatment Cycle:

- **Purge phase** (e.g., N₂)
- **Heating phase** in NH₃
- **Holding phase in NH₃** /carburization agent
- **O₂-control** with air or H₂O (Pronox®)
- **Purge phase** (e.g., N₂)

1,020 °F – 1,095 °F (550 °C – 590 °C)
840 °F – 970 °F (450 °C – 520 °C)

1,020 ºF – 1,095 ºF
(550 °C – 590 °C)

Load Image:
Corrosion resistance in salt spray test up to 400 hours!

Micrograph:

- **Oxidation Layer**
- **Compound Layer**
- **Base Material**

1 - 3 µm iron oxide layer Fe₃O₄
min. 8,6 % Nitrogen plus Carbon content
min. 15 µm ε – compound layer

Base material

This document contains proprietary information of Ipsen. It is submitted in confidence, and may not be reproduced or used for any other purpose or disclosed to others without written authorization from Ipsen.
Post-Oxidation Control

Amount of oxygen will depend on:

- Post-oxidation temperature
- Load surface

Main reasons to control post-oxidation:

- Heat treatment reproducibility
- Optimized oxygen consumption

Therefore, only the optimized mV value with λ sensor is necessary.

λ Sensor position in the exhaust fume pipe
Post-Oxidation Summary

- Use of a low temperature: 840 °F (450 °C)
- Hydrocarbon addition at the end of the FNC process
- Cooling to post-oxidation temperature under ammonia and hydrocarbon
- Small difference between end of oxide layer and maximum N+C value
- Quenching after post-oxidation instead of slow cooling
Nitriding: Internal Gear

Specification/Results:

<table>
<thead>
<tr>
<th>Material</th>
<th>31CrMoV9V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitriding Temperature</td>
<td>960 °F (515 °C)</td>
</tr>
<tr>
<td>Process Duration</td>
<td>70 h</td>
</tr>
<tr>
<td>Nitriding Potential</td>
<td>4 – 4.5</td>
</tr>
<tr>
<td>Nitriding Depth</td>
<td>0.015” – 0.029”/0.018”</td>
</tr>
<tr>
<td>Compound Layer Thickness</td>
<td>Max 20µm/17µm</td>
</tr>
</tbody>
</table>

Process Printout:

Microstructure:

Load Image:

This document contains proprietary information of Ipsen. It is submitted in confidence, and may not be reproduced or used for any other purpose or disclosed to others without written authorization from Ipsen.
FNC: Balance Pin

Specification/Results:

<table>
<thead>
<tr>
<th>Material:</th>
<th>31CrMoV9V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitriding Temp.:</td>
<td>1,000 °F (540 °C)</td>
</tr>
<tr>
<td>Process Dur.:</td>
<td>18 h</td>
</tr>
<tr>
<td>Nitriding Pot.:</td>
<td>3</td>
</tr>
<tr>
<td>Surface Hrd.:</td>
<td>720 – 820 HV10/758 HV10</td>
</tr>
<tr>
<td>Compound L. Th.:</td>
<td>14 – 22µm/16.2µm</td>
</tr>
</tbody>
</table>

Process Printout:

![Process Printout](image1)

Load Image:

![Load Image](image2)

Microstructure:

![Microstructure](image3)
FNC: Inner Gear

Specification/Results:

<table>
<thead>
<tr>
<th>Material</th>
<th>4140/42CrMo4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitriding Temperature:</td>
<td>1,060 °F (570 °C)</td>
</tr>
<tr>
<td>Process Duration:</td>
<td>5 h</td>
</tr>
<tr>
<td>Nitriding Potential:</td>
<td>2.5</td>
</tr>
<tr>
<td>Surface Hardness:</td>
<td>550 – 650 HV10/630 HV10</td>
</tr>
<tr>
<td>Nitriding Depth:</td>
<td>0.4 – 0.55 mm/0.5 mm</td>
</tr>
<tr>
<td>Compound Layer Thickness:</td>
<td>8 – 35μm/14.3μm</td>
</tr>
</tbody>
</table>

Process Printout:

Load Image:

Microstructure:
The advanced process and furnace technology of Ipsen’s **VDR furnaces** make it possible to create uniform, repeatable nitrided or nitrocarburized layers on a variety of materials. Benefits include:

- Optimized uniformity of the hot gas flow and the increased hot gas volume flow result in a temperature uniformity of ±10 °F (±5 °C)
- Reduction in process time by up to 30% thanks to the VDR furnace’s new, external high speed cooler
- Increase in throughput as components are treated for a shorter span of time
Optimized Processes:

- Nitriding
- Oxinitriding
- Nitrocarburizing
- Oxinitrocarburizing
- Pre-oxidation
- Post-oxidation

Process Monitoring and Control:

- Gas-analyzers
- Oxygen-probe
- HydroNit® sensor
- KiNit sensor
- Atmosphere calculation model